Red-Horse Lab

2016-Present

  1. Kwang-Min Kim, Alsu I. Zamaleeva, Youn Woo Lee, M. Rafiuddin Ahmed, Eunkyung Kim, Hye-Ryeon Lee, Venkata Raveendra Pothineni, Juan Tao, Siyeon Rhee, Mithya Jayakumar, Mohammed Inayathullah, Senthilkumar Sivanesan, Kristy Red-Horse, Theo D. Palmer, JonPark, Daniel V. Madison, Ho-Young Lee, Jayakumar Rajadas. Characterization of brain dysfunction induced by bacterial lipopeptides that alter neuronal activity and network in rodent brains. J of Neuro. (2018) 0825-17

  2. David T. Paik*, Lei Tian*, Jaecheol Lee, Nazish Sayed, Ian Y Chen, Siyeon Rhee, June-Wha Rhee, Youngkyun Kim, Robert Wirka, Jan W Buikema, Kristy Red-Horse, Thomas Quertermous, Joseph C. Wu.. Large-Scale Single-Cell RNA-Seq Reveals Molecular Signatures of Heterogeneous Populations of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Circ. Res. (2018). doi:10.1161/CIRCRESAHA.118.312913 [Epub]

  3. Tianying Su*, Geoff Stanley*, Rahul Sinha*, Gaetano D'Amato, Soumya Das, Siyeon Rhee, Andrew H. Chang, Aruna Poduri, Brian Raftrey, Thanh Theresa Dinh, Walter A. Roper, Guang Li, Kelsey E. Quinn, Kathleen M. Caron, Sean Wu, Lucile Miquerol, Eugene C. Butcher, Irving Weissman, Stephen Quake & Kristy Red-HorseSingle-cell analysis of early progenitor cells that build coronary arteries. Nature 559, 356–362 (2018). *Click here to find full submitted version with expanded text and figures Expanded main text and Expanded extended figures.

  4. S.  Rhee*, Chung, J. I.*, King, D. A., D’Amato, G., Paik, D. T., Duan, A., Chang, A., Nagelberg, D., Sharma, B., Jeong, Y., Diehn, M., Wu, J. C., Morrison, A. J., and Red-Horse, K., “Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease.”, Nature Communications, vol. 9, no. 1, 2018.

  5. B.  Sharma*, Ho, L., Ford, G. H., Chen, H. I., Goldstone, A. B., Y Woo, J., Quertermous, T., Reversade, B., and Red-Horse, K., “Alternative Progenitor Cells Compensate to Rebuild the Coronary Vasculature in Elabela- and Apj-Deficient Hearts.”, Developmental Cell, vol. 42, no. 6, pp. 655-666, 2017.

  6. S.  Das* and Red-Horse, K., “Cellular plasticity in cardiovascular development and disease.”, Developmental Dynamics, vol. 246, no. 4, pp. 328-335, 2017.

  7. B.  Sharma*, Chang, A. H., and Red-Horse, K., “Coronary Artery Development: Progenitor Cells and Differentiation Pathways.”, Annual Review of Physiology, vol. 79, pp. 1-19, 2017.

  8. A. H.  Chang*, Raftrey, B. C., D’Amato, G., Surya, V. N., Poduri, A., Chen, H. I., Goldstone, A. B., Woo, J., Fuller, G. G., Dunn, A. R., and Red-Horse, K., “DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12-CXCR4 signaling axis”, Genes and Development, vol. 31, pp. 1308-1324, 2017.

  9. C.  Hwangbo*, Wu, J., Papangeli, I., Adachi, T., Sharma, B., Park, S., Zhao, L., Ju, H., Go, G. -woong, Cui, G., Inayathullah, M., Job, J. K., Rajadas, J., Kwei, S. L., Li, M. O., Morrison, A. R., Quertermous, T., Mani, A., Red-Horse, K., and Chun, H. J., “Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects.”, Science Translational Medicine, vol. 9, no. 407, 2017.

  10. A.  Poduri*, Chang, A. H., Raftrey, B. C., Rhee, S., Van, M., and Red-Horse, K., “Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size.”, Development, vol. 144, no. 18, 2017.

  11. I.  Papangeli*, Kim, J., Maier, I., Park, S., Lee, A., Kang, Y., Tanaka, K., Khan, O. F., Ju, H., Kojima, Y., Red-Horse, K., Anderson, D. G., Siekmann, A. F., and Chun, H. J., “MicroRNA 139-5p coordinates APLNR-CXCR4 crosstalk during vascular maturation.”, Nature Communications, vol. 7, 2016.

2011-2015

  1. Q.  Liu, Hu, T., He, L., Huang, X., Tian, X., Zhang, H., He, L., Pu, W., Zhang, L., Sun, H., Fang, J., Yu, Y., Duan, S., Hu, C., Hui, L., Zhang, H., Quertermous, T., Xu, Q., Red-Horse, K., Wythe, J. D., and Zhou, B., “Genetic targeting of sprouting angiogenesis using Apln-CreER.”, Nat Commun, vol. 6, p. 6020, 2015.

  2. K. S.  Volz, Jacobs, A. H., Chen, H. I., Poduri, A., McKay, A. S., Riordan, D. P., Kofler, N., Kitajewski, J., Weissman, I., and Red-Horse, K., “Pericytes are progenitors for coronary artery smooth muscle.”, Elife, vol. 4, 2015.

  3. S. R.  Ali, Ranjbarvaziri, S., Talkhabi, M., Zhao, P., Subat, A., Hojjat, A., Kamran, P., Müller, A. M., Volz, K. S., Tang, Z., Red-Horse, K., and Ardehali, R., “Developmental Heterogeneity of Cardiac Fibroblasts Does Not Predict Pathological Proliferation and Activation.”, Circ Res, 2014.

  4. K.  Red-Horse, Drake, P. M., and Fisher, S., “Exploring the world of human development and reproduction.”, Int J Dev Biol, vol. 58, no. 2-4, pp. 87-93, 2014.

  5. A.  Sharma, Marceau, C., Hamaguchi, R., Burridge, P. W., Rajarajan, K., Churko, J. M., Wu, H., Sallam, K. I., Matsa, E., Sturzu, A. C., Che, Y., Ebert, A., Diecke, S., Liang, P., Red-Horse, K., Carette, J. E., Wu, S. M., and Wu, J. C., “Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus b3-induced myocarditis and antiviral drug screening platform.”, Circ Res, vol. 115, no. 6, pp. 556-66, 2014.

  6. A.  Schanz, Red-Horse, K., Hess, A. P., Baston-Büst, D. M., Heiss, C., and Krüssel, J. S., “Oxygen regulates human cytotrophoblast migration by controlling chemokine and receptor expression.”, Placenta, vol. 35, no. 12, pp. 1089-94, 2014.

  7. H. I.  Chen, Sharma, B., Akerberg, B. N., Numi, H. J., Kivela, R., Saharinen, P., Aghajanian, H., McKay, A. S., Bogard, P. E., Chang, A. H., Jacobs, A. H., Epstein, J. A., Stankunas, K., Alitalo, K., and Red-Horse, K., “The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis.”, Development, 2014.

  8. H. I.  Chen, Poduri, A., Numi, H., Kivela, R., Saharinen, P., McKay, A. S., Raftrey, B., Churko, J., Tian, X., Zhou, B., Wu, J. C., Alitalo, K., and Red-Horse, K., “VEGF-C and aortic cardiomyocytes guide coronary artery stem development.”, J Clin Invest, 2014.

  9. X.  Tian, Hu, T., Zhang, H., He, L., Huang, X., Liu, Q., Yu, W., He, L., Yang, Z., Zhang, Z., Zhong, T. P., Yang, X., Yang, Z., Yan, Y., Baldini, A., Sun, Y., Lu, J., Schwartz, R. J., Evans, S. M., Gittenberger-de Groot, A. C., Red-Horse, K., and Zhou, B., “Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries.”, Cell Res, 2013.

  10. D. M.  Greif, Kumar, M., Lighthouse, J. K., Hum, J., An, A., Ding, L., Red-Horse, K., Espinoza, H. F., Olson, L., Offermanns, S., and Krasnow, M. A., “Radial construction of an arterial wall.”, Dev Cell, vol. 23, no. 3, pp. 482-93, 2012.

2006-2010

  1. K.  Red-Horse, Ueno, H., Weissman, I. L., and Krasnow, M. A., “Coronary arteries form by developmental reprogramming of venous cells.”, Nature, vol. 464, no. 7288, pp. 549-53, 2010.

  2. K.  Red-Horse, “Lymphatic vessel dynamics in the uterine wall.”, Placenta, vol. 29 Suppl A, pp. S55-9, 2008.

  3. K.  Red-Horse, Crawford, Y., Shojaei, F., and Ferrara, N., “Endothelium-microenvironment interactions in the developing embryo and in the adult.”, Dev Cell, vol. 12, no. 2, pp. 181-94, 2007.

  4. K.  Red-Horse and Ferrara, N., “Vascular targeting via caveolae.”, Nat Biotechnol, vol. 25, no. 4, pp. 431-2, 2007.

  5. K.  Red-Horse, Rivera, J., Schanz, A., Zhou, Y., Winn, V., Kapidzic, M., Maltepe, E., Okazaki, K., Kochman, R., Vo, K. Chi, Giudice, L., Erlebacher, A., McCune, J. M., Stoddart, C. A., and Fisher, S. J., “Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation.”, J Clin Invest, vol. 116, no. 10, pp. 2643-52, 2006.

  6. K.  Red-Horse and Ferrara, N., “Imaging tumor angiogenesis.”, J Clin Invest, vol. 116, no. 10, pp. 2585-7, 2006.

  7. K.  Red-Horse, Rivera, J., Schanz, A., Zhou, Y., Winn, V., Kapidzic, M., Maltepe, E., Okazaki, K., Kochman, R., Vo, K. C., Giudice, L., Erlebacher, A., McCune, J. M., Stoddart, C. A., and Fisher, S. J., “Literature watch. Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation.”, Lymphat Res Biol, vol. 4, no. 4, pp. 229-42, 2006.

2001-2005

  1. K.  Red-Horse, Kapidzic, M., Zhou, Y., Feng, K. - T., Singh, H., and Fisher, S. J., “EPHB4 regulates chemokine-evoked trophoblast responses: a mechanism for incorporating the human placenta into the maternal circulation.”, Development, vol. 132, no. 18, pp. 4097-106, 2005.

  2. B.  Chénais, Derjuga, A., Massrieh, W., Red-Horse, K., Bellingard, V., Fisher, S. J., and Blank, V., “Functional and placental expression analysis of the human NRF3 transcription factor.”, Mol Endocrinol, vol. 19, no. 1, pp. 125-37, 2005.

  3. E.  Maltepe, Krampitz, G. W., Okazaki, K. M., Red-Horse, K., Mak, W., M Simon, C., and Fisher, S. J., “Hypoxia-inducible factor-dependent histone deacetylase activity determines stem cell fate in the placenta.”, Development, vol. 132, no. 15, pp. 3393-403, 2005.

  4. K.  Red-Horse, Drake, P. M., and Fisher, S. J., “Human pregnancy: the role of chemokine networks at the fetal-maternal interface.”, Expert Rev Mol Med, vol. 6, no. 11, pp. 1-14, 2004.

  5. P. M.  Drake, Red-Horse, K., and Fisher, S. J., “Reciprocal chemokine receptor and ligand expression in the human placenta: implications for cytotrophoblast differentiation.”, Dev Dyn, vol. 229, no. 4, pp. 877-85, 2004.

  6. K.  Red-Horse, Zhou, Y., Genbacev, O., Prakobphol, A., Foulk, R., McMaster, M., and Fisher, S. J., “Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface.”, J Clin Invest, vol. 114, no. 6, pp. 744-54, 2004.

  7. P. M.  Drake, Red-Horse, K., and Fisher, S. J., “Chemokine expression and function at the human maternal-fetal interface.”, Rev Endocr Metab Disord, vol. 3, no. 2, pp. 159-65, 2002.

  8. K.  Red-Horse, Drake, P. M., Gunn, M. D., and Fisher, S. J., “Chemokine ligand and receptor expression in the pregnant uterus: reciprocal patterns in complementary cell subsets suggest functional roles.”, Am J Pathol, vol. 159, no. 6, pp. 2199-213, 2001.