Red-Horse Lab Publications
Red-Horse lab papers in red
2025
- Tian W, Wu TTH, Gu S, Chang JL, Huang C, Vinh R, Andruska AM, Song KK, Kim D, Zhu Y, Lee S, Pan J, Kao PN, Desai T, Prince LS, Butcher LD, Jiang X, Rabinovitch M, Red-Horse K, Nicolls MR. An embryonic artery-forming niche reactivates in pulmonary arterial hypertension BioRxiv. 2025 May 7; doi.org/10.1101/2025.05.02.651303
- Graus MS, Jha SK, Lou J, Holm A, Wong YY, Davidson T, Coleman P, Sugo E, Luu W, Karnezis T, Gamble J, McCaughan G, Nightingale S, Bischoff J, Maruyama K, Hinde E, Red-Horse K, Francois M. Inhibiting SOX18 with propranolol restores vascular integrity in NR2F2-driven malformations BioRxiv. 2025 April 27; doi.org/10.1101/2025.04.25.650344
- Szemes T, José ASS, Azouz A, Sitte M, Salinas G, Achouri Y, Kricha S, Ris L, Red-Horse K, Bellefroid EJ, Desiderio S. Temporal refinement of Dach1 expression contributes to the development of somatosensory neurons The EMBO Journal. 2025 April 9; https://doi.org/10.1038/s44318-025-00427-y
- Rios Coronado PE*, Zhou J*, Fan I*, Zanetti D*, Naftaly JA, Prabala P, Martínez Jaimes AM, Farah EN, Kundu S, Deshpande SS, Evergreen I, Kho PF, Ma Q, Hilliard AT, Abramowitz S, Pyarajan S, Dochtermann D, Million Veteran Program, Damrauer S, Chang KM, Levin MG, Winn VD, Pașca AM, Plomondon ME, Waldo SW, Tsao PS, Kundaje A, Chi NC, Clarke SL, Red-Horse K*, Assimes TL*. CXCL12 drives natural variation in coronary artery anatomy across diverse populations Cell. 2025 April 3; 188,(1–23). doi: 10.1016/j.cell.2025.02.005.
- Loh KM, Zheng SL, Liu KJ, Yin Q, Amir-Ugokwe ZA, Jha SK, Qi Y, Wazny VK, Nguyen AT, Chen A, Njunkeng FM, Cheung C, Spiekerkoetter E, Red-Horse K, Ang LT. Protocol for efficient generation of human artery and vein endothelial cells from pluripotent stem cells STAR Protocols. 2025 March 21; doi: 10.1016/j.xpro.2024.103494
- Prescott JB, Liu KJ, Lander A, Qian Pek NM, Jha SK, Bokelmann M, Begur M, Koh PW, Yang H, Lim B, Red-Horse K, Weissman IL, Loh KM, Ang LT. Metabolically purified human stem cell-derived hepatocytes reveal distinct effects of Ebola and Lassa viruses BioRxiv. 2025 February 21; doi: 10.1101/2025.02.17.638665.
2024
- Mohanakrishnan V, Sivaraj KK, Jeong HW, Bovay E, Dharmalingam B, Bixel MG, Dinh VV, Petkova M, Paredes Ugarte I, Kuo YT, Gurusamy M, Raftrey B, Chu NTL, Das S, Rios Coronado PE, Stehling M, Sävendahl L, Chagin AS, Mäkinen T, Red-Horse K, Adams RH. Specialized post-arterial capillaries facilitate adult bone remodelling Nat Cell Biol. 2024 Nov 11;26(12):2020–2034. doi:10.1038/s41556-024-01545-1.
- Ryu JK, Yan Z, Montano M, Sozmen EG, Dixit K, Suryawanshi RK, Matsui Y, Helmy E, Kaushal P, Makanani SK, Deerinck TJ, Meyer-Franke A, Rios Coronado PE, Trevino TN, Shin MG, Tognatta R, Liu Y, Schuck R, Le L, Miyajima H, Mendiola AS, Arun N, Guo B, Taha TY, Agrawal A, MacDonald E, Aries O, Yan A, Weaver O, Petersen MA, Meza Acevedo R, Alzamora MDPS, Thomas R, Traglia M, Kouznetsova VL, Tsigelny IF, Pico AR, Red-Horse K, Ellisman MH, Krogan NJ, Bouhaddou M, Ott M, Greene WC, Akassoglou K. Fibrin drives thromboinflammation and neuropathology in COVID-19 Nature. Aug 28, 2024; 633, 905–913. https://doi.org/10.1038/s41586-024-07873-4
- Szemes T, Sabaté San José A, Azouz A, Sitte M, Salinas G, Achouri Y, Kricha S, Ris L, Red-Horse K, Bellefroid EJ, Desiderio S. The temporal refinement of Dach1 is a key step in the functional maturation of primary somatosensory neurons BioRxiv. 2024 July 18; doi: https://doi.org/10.1101/2024.07.18.604081.
- Stewen J, Kruse K, Godoi-Filip AT, Zenia, Jeong HW, Adams S, Berkenfeld F, Stehling M, Red-Horse K, Adams RH, Pitulescu ME. Eph-ephrin signaling couples endothelial cell sorting and arterial specification Nat Commun. 2024 Apr 3;15(1):2539. doi: 10.1038/s41467-024-46300-0.
- Fowler JL, Zheng SL, Nguyen A, Chen A, Xiong X, Chai T, Chen JY, Karigane D, Banuelos AM, Niizuma K, Kayamori K, Nishimura T, Cromer MK, Gonzalez-Perez D, Mason C, Liu DD, Yilmaz L, Miquerol L, Porteus MH, Luca VC, Majeti R, Nakauchi H, Red-Horse K, Weissman IL, Ang LT, Loh KM. Lineage-tracing hematopoietic stem cell origins in vivo to efficiently make human HLF+ HOXA+ hematopoietic progenitors from pluripotent stem cells Dev Cell 2024 Apr 2; 59:1-22. doi: 10.1016/j.devcel.2024.03.003.
2023
- Rios Coronado PE, Zanetti D, Zhou J, Naftaly JA, Prabala P, Kho PF, Martínez Jaimes AM, Hilliard AT, Pyarajan S, Dochtermann D, Chang K, Winn VD, Pașca AM, Plomondon ME, Waldo SW, Tsao PS, Clarke SL, Red-Horse K, Assimes TL. CXCL12 regulates coronary artery dominance in diverse populations and links development to disease medRxiv (Cold Spring Harbor Laboratory) 2023 Oct 27. https://doi.org/10.1101/2023.10.27.23297507
- Chiang IK, Humphrey D, Mills RJ, Kaltzis P, Pachauri S, Graus M, Saha D, Wu Z, Young P, Sim CB, Davidson T, Hernandez-Garcia A, Shaw CA, Renwick A, Scott DA, Porrello ER, Wong ES, Hudson JE, Red-Horse K, Del Monte-Nieto G, Francois M. Sox7-positive endothelial progenitors establish coronary arteries and govern ventricular compaction EMBO Rep. 2023 Aug 8:e55043. doi: 10.15252/embr.202255043.
- Arolkar G, Krishna Kumar S, Wang H, Gonzalez KM, Kumar S, Bishnoi B, Rios Coronado PE, Woo YJ, Red-Horse K, Das S. Dedifferentiation and Proliferation of Artery Endothelial Cells Drive Coronary Collateral Development in Mice ATVB. 2023 June 22; 43:00–00. doi: 10.1161/ATVBAHA.123.319319
- Baral K, D’Amato G, Kuschel B, Bogan F, Jones BW, Large CL, Whatley JD, Red-Horse K, Sharma B. APJ+ cells in the SHF contribute to the cells of aorta and pulmonary trunk through APJ signaling Dev Bio. 2023 Apr 08; 498:77-86. doi: 10.1016/j.ydbio.2023.04.003.
2022
- Dinh TT, Xiang M, Rajaraman A, et al.; An NKX-COUP-TFII morphogenetic code directs mucosal endothelial addressin expression Nat Commu. 2022 Dec 02:13, 7448. doi: 10.1038/s41467-022-34991-2.
- D’Amato G, Phansalkar R, Naftaly JA, Rios Coronado PE, Cowley DO, Quinn KE, Sharma B, Caron KM, Vigilante A, Red-Horse K.; Endocardium-to-coronary artery differentiation during heart development and regeneration involves sequential roles of Bmp2 and Cxcl12/Cxcr4.
Developmental Cell. 2022 Nov 21; doi.org/10.1016/j.devcel.2022.10.007;
- [Commentary by Luis Diago-Domingo, Henar Cuervo, and Rui Benedito] 39
- Trimm E, Red-Horse K.; Vascular endothelial cell development and diversity. Nature Reviews Cardiology. 2022 Oct 5; doi.org/10.1038/s41569-022-00770-1.
- Anbazhakan S, Rios Coronado PE, Sy-Quia ANL, Seow LW, Hands AM, Zhao M, Dong ML, Pfaller MR, Amir ZA, Raftrey BC, Cook CK, D’Amato G, Fan X, Williams IM, Jha SK, Bernstein D, Nieman K, Pașca AM, Marsden AL, Red-Horse K. ; Blood flow modeling reveals improved collateral artery performance during the regenerative period in mammalian hearts. Nature Cardiovascular Research. 2022 Aug 12; 1, 775–790. doi:10.1038/s44161-022-00114-9.
- Ang LT, Nguyen AT, Liu KJ, Chen A, Xiong X, Curtis M, Martin RM, Raftry BC, Ng CY, Vogel U, Lander A, Lesch BJ, Fowler JL, Holman AR, Chai T, Vijayakumar S, Suchy FP, Nishimura T, Bhadury J, Porteus MH, Nakauchi H, Cheung C, George SC, Red-Horse K, Prescott JB, Loh KM; Generating human artery and vein cells from pluripotent stem cells highlights the arterial tropism of Nipah and Hendra viruses. Cell. 2022 Jun 14;S0092-8674(22)00655-9. doi: 10.1016/j.cell.2022.05.024.
- Phansalkar R, Red-Horse K.; A new resource for human coronary vessel development. Cardiovascular Research. 2022 Jun 21;cvac094. doi:10.1093/cvr/cvac094.
- Jones RC, Karkanias J, Krasnow MA, Pisco AO, Quake SR, Salzman J, Yosef N.; Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science. 2022 May 13;376:e6594. doi: 10.1126/science.abl4896.
2021
- Phansalkar R, Krieger J, Zhao M, Kolluru SS, Jones RC, Quake SR, Weissman I, Bernstein D, Winn VD, D'Amato G, Red-Horse K. Coronary blood vessels from distinct origins converge to equivalent states during mouse and human development. Elife. 2021 Dec 15;10:e70246. doi: 10.7554/eLife.70246.
- Raftrey B, Williams IM, Rios Coronado PE, Fan X, Chang AH, Zhao M, Roth RK, Trimm E, Racelis R, D’Amato G, Phansalkar R, Nguyen A, Chai T, Gonzalez KM, Zhang Y, Ang LT, Loh K, Bernstein D, Red-Horse K. Dach1 Extends Artery Networks and Protects Against Cardiac Injury Circ Res. 2021;129(5):e1–e14. doi:10.1161/CIRCRESAHA.120.318271. PMID:34383559.
- Rhee S, Paik DT, Yang JY, Nagelberg D, Williams I, Tian L, Roth R, Chandy M, Ban J, Belbachir N, Kim S, Zhang H, Phansalkar R, Wong KM, King DA, Valdez C, Winn VD, Morrison AJ, Wu JC, Red-Horse K. Endocardial/endothelial angiocrines regulate cardiomyocyte development and maturation and induce features of ventricular non-compaction, Eur Heart J. 2021 Nov 1;42(41):4264–4276. doi:10.1093/eurheartj/ehab504.
- Stone OA, Zhou B, Red-Horse K, Stainier DYR. Endothelial ontogeny and the establishment of vascular heterogeneity. Bioessays. 2021 Jul;43(7):e2100036. doi: 10.1002/bies.202100036. PMID: 34145927.
- Jung JH, Ikeda G, Tada Y, von Bornstädt D, Santoso MR, Wahlquist C, Rhee S, Jeon YJ, Yu AC, O'brien CG, Red-Horse K, Appel EA, Mercola M, Woo J, Yang PC. miR-106a-363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury. Basic Res Cardiol. 2021 Mar 19;116(1):19. PMID: 33742276.
- Rios Coronado PE, Red-Horse K. Enhancing cardiovascular research with whole-organ imaging. Curr Opin Hematol. 2021 May 1;28(3):214-220. PMID: 33741761.
- Red-Horse K, Das S. New Research Is Shining Light on How Collateral Arteries Form in the Heart: a Future Therapeutic Direction? Curr Cardiol Rep. 2021 Mar 2;23(4):30 PMID: 33655379.
2020
- Paik DT, Tian L, Williams IM, Rhee S, Zhang H, Liu C, Mishra R, Wu SM, Red-Horse K, Wu JC. Single-Cell RNA Sequencing Unveils Unique Transcriptomic Signatures of Organ-Specific Endothelial Cells. Circulation. 2020 Nov 10;142(19):1848-1862. Epub 2020 Sep 15. PMID: 32929989.
- Dermadi D, Rahman M, Kiefel H, O'Hara E, Koning JJ, Kawashima H, Zhou B, Vestweber D, Red-Horse K, Mebius RE, Adams RH, Kubes P, Pan J, Butcher EC. A molecular map of murine lymph node blood vascular endothelium at single cell resolution. Nat Commun. 2020 Jul 30;11(1):3798. PMID: 32732867.
- Buikema JW, Lee S, Goodyer WR, Maas RG, Chirikian O, Li G, Miao Y, Paige SL, Lee D, Wu H, Paik DT, Rhee S, Tian L, Galdos FX, Puluca N, Beyersdorf B, Hu J, Beck A, Venkamatran S, Swami S, Wijnker P, Schuldt M, Dorsch LM, van Mil A, Red-Horse K, Wu JY, Geisen C, Hesse M, Serpooshan V, Jovinge S, Fleischmann BK, Doevendans PA, van der Velden J, Garcia KC, Wu JC, Sluijter JPG, Wu SM. Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell. 2020 Jul 2;27(1):50-63.e5. PMID: 32619518.
- Jung KO, Kim TJ, Yu JH, Rhee S, Zhao W, Ha B, Red-Horse K, Gambhir SS, Pratx G. Whole-body tracking of single cells via positron emission tomography. Nat Biomed Eng. 2020 Aug;4(8):835-844. Epub 2020 Jun 15. PMID: 32541917.
- Large CL, Vitali HE, Whatley JD, Red-Horse K, Sharma B. In Vitro Model of Coronary Angiogenesis. J Vis Exp. 2020 Mar 10;(157) PMID: 32225157.
- Phansalkar R, Red-Horse K. Techniques Converge to Map the Developing Human Heart at Single-Cell Level. Nature. 2020 Jan;577(7792):629–630. doi:10.1038/d41586-020-00151-z. PMID:31988406.
2019
- Gancz D, Raftrey BC, Perlmoter G, Marín-Juez R, Semo J, Matsuoka RL, Karra R, Raviv H, Moshe N, Addadi Y, Golani O, Poss KD, Red-Horse K, Stainier DYR, Yaniv K. Distinct origins and molecular mechanisms contribute to lymphatic formation during cardiac growth and regeneration. eLife. 2019 Nov 8. doi:10.7554/eLife.44153.
- Red-Horse K, Siekmann AF. Veins and Arteries Build Hierarchical Branching Patterns Differently: Bottom-Up versus Top-Down. BioEssays. 2019 Mar; 41(3). doi:10.1002/bies.201800198.
- Das S, Goldstone AB, Wang H, de Jesus Perez V, Woo YJ, Red-Horse K. A Unique Collateral Artery Development ProgramPromotes Neonatal Heart Regeneration. Cell. 2019 Feb 28; 176(5):1158– 1172. doi:10.1016/j.cell.2019.01.052.
2018
Kim K-M, Zamaleeva AI, Lee YW, Ahmed MR, Kim E, Lee H-R, Pothineni VR, Tao J, Rhee S, Jayakumar M, Inayathullah M, Sivanesan S, Red-Horse K, Palmer TD, Park J, Madison DV, Lee H-Y, Rajadas J.. Characterization of brain dysfunction induced by bacterial lipopeptides that alter neuronal activity and network in rodent brains. J of Neuro. (2018) 0825-17
Paik DT, Tian L, Lee J, Sayed N, Chen IY, Rhee S, Rhee J-W, Kim Y, Wirka R, Buikema JW, Red-Horse K, Quertermous T, Wu JC. Large-Scale Single-Cell RNA-Seq Reveals Molecular Signatures of Heterogeneous Populations of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Circ. Res. (2018). doi:10.1161/CIRCRESAHA.118.312913 [Epub]
Tianying Su, Geoff Stanley, Rahul Sinha*, Gaetano D'Amato, Soumya Das, Siyeon Rhee, Andrew H. Chang, Aruna Poduri, Brian Raftrey, Thanh Theresa Dinh, Walter A. Roper, Guang Li, Kelsey E. Quinn, Kathleen M. Caron, Sean Wu, Lucile Miquerol, Eugene C. Butcher, Irving Weissman, Stephen Quake & Kristy Red-Horse. Single-cell analysis of early progenitor cells that build coronary arteries. Nature 559, 356–362 (2018).
Rhee S, Chung JI, King DA, D’Amato G., Paik DT, Duan A, Chang A, Nagelberg D, Sharma B, Jeong Y, Diehn M, Wu JC, Morrison AJ, and Red-Horse K. “Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease.”, Nature Communications, vol. 9, no. 1, 2018.
2017
B. Sharma*, Ho, L., Ford, G. H., Chen, H. I., Goldstone, A. B., Y Woo, J., Quertermous, T., Reversade, B., and Red-Horse, K., “Alternative Progenitor Cells Compensate to Rebuild the Coronary Vasculature in Elabela- and Apj-Deficient Hearts.”, Developmental Cell, vol. 42, no. 6, pp. 655-666, 2017.
S. Das* and Red-Horse, K., “Cellular plasticity in cardiovascular development and disease.”, Developmental Dynamics, vol. 246, no. 4, pp. 328-335, 2017.
B. Sharma*, Chang, A. H., and Red-Horse, K., “Coronary Artery Development: Progenitor Cells and Differentiation Pathways.”, Annual Review of Physiology, vol. 79, pp. 1-19, 2017.
A. H. Chang*, Raftrey, B. C., D’Amato, G., Surya, V. N., Poduri, A., Chen, H. I., Goldstone, A. B., Woo, J., Fuller, G. G., Dunn, A. R., and Red-Horse, K., “DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12-CXCR4 signaling axis”, Genes and Development, vol. 31, pp. 1308-1324, 2017.
C. Hwangbo*, Wu, J., Papangeli, I., Adachi, T., Sharma, B., Park, S., Zhao, L., Ju, H., Go, G. -woong, Cui, G., Inayathullah, M., Job, J. K., Rajadas, J., Kwei, S. L., Li, M. O., Morrison, A. R., Quertermous, T., Mani, A., Red-Horse, K., and Chun, H. J., “Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects.”, Science Translational Medicine, vol. 9, no. 407, 2017.
A. Poduri*, Chang, A. H., Raftrey, B. C., Rhee, S., Van, M., and Red-Horse, K., “Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size.”, Development, vol. 144, no. 18, 2017.
2016
- I. Papangeli*, Kim, J., Maier, I., Park, S., Lee, A., Kang, Y., Tanaka, K., Khan, O. F., Ju, H., Kojima, Y., Red-Horse, K., Anderson, D. G., Siekmann, A. F., and Chun, H. J., “MicroRNA 139-5p coordinates APLNR-CXCR4 crosstalk during vascular maturation.”, Nature Communications, vol. 7, 2016.
2015
Q. Liu, Hu, T., He, L., Huang, X., Tian, X., Zhang, H., He, L., Pu, W., Zhang, L., Sun, H., Fang, J., Yu, Y., Duan, S., Hu, C., Hui, L., Zhang, H., Quertermous, T., Xu, Q., Red-Horse, K., Wythe, J. D., and Zhou, B., “Genetic targeting of sprouting angiogenesis using Apln-CreER.”, Nat Commun, vol. 6, p. 6020, 2015.
K. S. Volz, Jacobs, A. H., Chen, H. I., Poduri, A., McKay, A. S., Riordan, D. P., Kofler, N., Kitajewski, J., Weissman, I., and Red-Horse, K., “Pericytes are progenitors for coronary artery smooth muscle.”, Elife, vol. 4, 2015.
2014
S. R. Ali, Ranjbarvaziri, S., Talkhabi, M., Zhao, P., Subat, A., Hojjat, A., Kamran, P., Müller, A. M., Volz, K. S., Tang, Z., Red-Horse, K., and Ardehali, R., “Developmental Heterogeneity of Cardiac Fibroblasts Does Not Predict Pathological Proliferation and Activation.”, Circ Res, 2014.
K. Red-Horse, Drake, P. M., and Fisher, S., “Exploring the world of human development and reproduction.”, Int J Dev Biol, vol. 58, no. 2-4, pp. 87-93, 2014.
A. Sharma, Marceau, C., Hamaguchi, R., Burridge, P. W., Rajarajan, K., Churko, J. M., Wu, H., Sallam, K. I., Matsa, E., Sturzu, A. C., Che, Y., Ebert, A., Diecke, S., Liang, P., Red-Horse, K., Carette, J. E., Wu, S. M., and Wu, J. C., “Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus b3-induced myocarditis and antiviral drug screening platform.”, Circ Res, vol. 115, no. 6, pp. 556-66, 2014.
A. Schanz, Red-Horse, K., Hess, A. P., Baston-Büst, D. M., Heiss, C., and Krüssel, J. S., “Oxygen regulates human cytotrophoblast migration by controlling chemokine and receptor expression.”, Placenta, vol. 35, no. 12, pp. 1089-94, 2014.
H. I. Chen, Sharma, B., Akerberg, B. N., Numi, H. J., Kivela, R., Saharinen, P., Aghajanian, H., McKay, A. S., Bogard, P. E., Chang, A. H., Jacobs, A. H., Epstein, J. A., Stankunas, K., Alitalo, K., and Red-Horse, K., “The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis.”, Development, 2014.
H. I. Chen, Poduri, A., Numi, H., Kivela, R., Saharinen, P., McKay, A. S., Raftrey, B., Churko, J., Tian, X., Zhou, B., Wu, J. C., Alitalo, K., and Red-Horse, K., “VEGF-C and aortic cardiomyocytes guide coronary artery stem development.”, J Clin Invest, 2014.
2013
- X. Tian, Hu, T., Zhang, H., He, L., Huang, X., Liu, Q., Yu, W., He, L., Yang, Z., Zhang, Z., Zhong, T. P., Yang, X., Yang, Z., Yan, Y., Baldini, A., Sun, Y., Lu, J., Schwartz, R. J., Evans, S. M., Gittenberger-de Groot, A. C., Red-Horse, K., and Zhou, B., “Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries.”, Cell Res, 2013.
2012
- D. M. Greif, Kumar, M., Lighthouse, J. K., Hum, J., An, A., Ding, L., Red-Horse, K., Espinoza, H. F., Olson, L., Offermanns, S., and Krasnow, M. A., “Radial construction of an arterial wall.”, Dev Cell, vol. 23, no. 3, pp. 482-93, 2012.
2010
- K. Red-Horse, Ueno, H., Weissman, I. L., and Krasnow, M. A., “Coronary arteries form by developmental reprogramming of venous cells.”, Nature, vol. 464, no. 7288, pp. 549-53, 2010.